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Abstract: Nanotechnology world is swiftly evolving and opens up a new vista with potential. Characterization 

of nanostructured materials is necessary to establish the understanding and control of nanoparticle synthesis 

and application. X-ray diffraction (XRD) is a tool for the investigation of matter. In the case of nanocrystalline 

material, the average crystallite size (D) of the material is the most predominant factor which influences the 

physical and chemical properties.  X-ray diffraction is the most convenient method for determination of average 

crystallite size.  Simultaneous use of X-ray diffracting techniques and high-resolution microscopy, improves the 

powder diffraction method to determine the characterization of nanocrystalline material. The X-ray diffraction 

patterns of nanostructured materials will be broader as compared to single crystal XRD pattern.  The 

broadening of XRD spectrum is an interesting area which give a number of information about nanocrystalline 

material. 
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1. INTRODUCTION 
Nanoscience is the study of nanoscale materials - 

materials that exhibit remarkable properties, functio-

nality, and the phenomena due to the influence of 

small dimensions.  Nanotechnology is the natural pro-

gression of technology miniaturization from the bulk 

macroscopic world to the millimetre - sized objects to 

micron dimensions (e.g.: integrated circuits), and, 

finally, into the nanoworld (e.g.: the quantum dot).  

X-ray diffraction (XRD) is a tool for the investiga-

tion of the matter.  X-rays was discovered in 1895 by 

Roentgen.  The genesis of XRD can be treated to the 

suggestion of Max Von- Laue in 1912 that a crystal 

can be considered as a three dimensional diffraction 

grating, and he observed the characteristic X-ray dif-

fraction from crystals.  The suggestion was based on 

the Ph.D thesis of Paul Ewald, who considered a 

crystal as three dimensional array of oscillators sepa-

rated at a distance.  At first this technique was used 

only for the determination of crystal structure.  Today 

this method is applied not only to structure determi-

nation but to a number of problems as like chemical 

analysis, stress and strain measurement, to the shape 

of phase equilibrium and the measurement of particle 

size. 

In the case of nanocrystalline material, the average 

crystallite size (D) of the material is the most predo-

minant factor which influences the physical and 

chemical properties. The XRD patterns of nanostruc-

tured materials will be broader as compared to single 

crystal XRD pattern.  The broadening of XRD spec-

trum is an excellent area which gives large informa-

tion about the nanocrystalline material.  A perfect 

crystal would extend in all direction to infinity, so no 

crystals are perfect due to their finite size.  This devi-

ation from perfect crystallinity leads to the broadening 

of the diffraction peaks. 

 

2. X-RAY DIFFRACTION ANALYSIS 
X-rays are radiations with the wavelength compa-

rable to the size of the atomic dimensions.  XRD is a 

tool for the investigation of the matter.  X-rays dis-

covered in 1895 by Roentgen.  The genesis of XRD 

treated to the suggestion of Max Von- Laue in 1912 

that a crystal could consider as a three-dimensional 

diffraction grating, and he observed the characteristic 

X-ray diffraction from crystals. The suggestion based 

on the Ph. D thesis of Paul Ewald, who considered a 

crystal as a three dimensional array of oscillators se-

parated at a distance.  At first, this technique was used 

only for the determination of crystal structure.  Today 

this method is applied not only to structure determi-

nation but some problems as like chemical analysis, 

stress and strain measurement, to the shape of phase 

equilibrium and the measurement of particle size [1].   

A few years later, W.L Bragg & W.H Bragg came 

with the idea of treating diffraction from a crystal as 

reflection from the lattice planes, and that planes 

identified with a set of integers h, k, l called Miller 

indices [2].  Bragg considers, X-ray diffraction was 

originating due to the interference of X-ray reflec-

tions.  Each plane reflects only a very small fraction 

of radiation.  In a plane, each atom becomes a source 

of scattered X-ray radiation, and in general, the scat-

tered X-ray from all atoms in a crystal will combine 

destructively as they fall on the top of one another in a 

random manner.  In a perfect crystal, X-ray scatters 

without loss of energy, the incident waves reflected 

secularly from the parallel planes of atoms in the 

crystal, and constructive interference may occur in 
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certain directions. 

Partial reflection followed by interference is called 

Bragg reflection.  So the words diffraction and reflec-

tion are mutually interchangeable in Bragg treatment.  

Based on these considerations Bragg derived a simple 

mathematical relationship, which serves as the condi-

tion for Bragg reflection to occur [3]. If „d‟ is the in-

terplanar spacing, ƛ is the wavelength of incident X-

ray beam, and θ is the angle of incidence, then ac-

cording to Bragg‟s law, 

 

nƛ = 2d Sin θ;     n =1, 2, 3......                    (1) 

 

Where „n‟ is the order of the spectrum. 

 

 
 

Figure 1 Reflection of X-rays from a crystal  

[Courtesy: https://www.kullabs.com] 

 

 
Figure 2 Powder X-ray diffraction 

 [Courtesy: https://www.pinterest.com] 

 

This diffraction condition can be written in vector 

form as, 

 

2 k∙G + G2 = 0         (2) 

 

Where G is a reciprocal lattice vector such that 

where the diffraction condition is met, is defined as, 

 

G = ∆k = k - k’          (3) 

 

Where k is the incident wave vector and k’ is the 

reflected wave vector. 

There are three X-ray diffraction methods by which 

the crystal structure to be analyzed.  They are Laue 

method, Rotating crystal method and the powder me-

thod. The diagram of powdered X-ray diffraction 

shown in Figure 2.  In this approach powdered form 

of the sample is used to obtain the diffraction patterns.  

Diffracted X-rays are detected, processed and 

counted. By scanning the sample through a range of 

2θ angle, all possible directions of the lattice should 

be attained due to random orientation of the powdered 

material. 
 

2.1. X-Ray Diffraction in Nanostructured            

       Materials 
 In the case of nanocrystalline material, the average 

crystallite size (D) of the material is the most predo-

minant factor which influences the physical and 

chemical properties.  X-ray diffraction is the most 

convenient method for determination of average 

crystallite size.  Simultaneous use of X-ray diffracting 

techniques and high-resolution microscopy improves 

the powder diffraction method to determine the cha-

racterization of nanocrystalline material [4] 

The X-ray diffraction patterns of nanostructured 

materials will be broader as compared to single crystal 

XRD pattern.  The broadening of XRD spectrum is an 

exciting area which gives some information about the 

nanocrystalline material.  A perfect crystal would 

extend in all direction to infinity, so no crystals are 

perfect due to their finite size.  This deviation from 

perfect crystallinity leads to the broadening of the 

diffraction peaks 

 

2.2. The Broadening Of X-Ray Diffraction      

        Lines for Small Crystallites 
The measurement of crystallite size in nanocrystal-

line specimens using X-ray diffraction technique is 

based on the broadening of the diffraction lines when 

the crystallite size becomes very tiny [1].  For crystal-

lites with size greater than 100nm, there is no measur-

able broadening of diffraction lines.  In the nanosize 

regime, where the linear dimension is less than 

100nm, the estimations based on the line broadening 

is applicable. The cause of broadening of XRD lines 

from small crystallites is understood by extending the 

method of deduction of Bragg‟s law to cover the in-

complete reinforcement of waves scattered by succes-

sive lattice planes [12].   

Bragg‟s law deduced by finding the conditions 

under which the waves reflected from all the planes in 

a crystal are in phase with each other.  However, there 

will be an appreciable amount of radiation scattered, 

even if the law is not precisely obeyed.  For small 

crystals, the deviation may be quite large and 
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reflections may appear over a range of angle and the 

diffraction lines are broadened.  The order of 

magnitude of broadening can be estimated as follows.  

Consider a beam of X-rays falling up on a set of 2m 

lattice planes at an angle θ+δθ and scattered at same 

angle. δθ is the deviation from the correct Bragg angle 

for particular reflections from the lattice planes.  So 

the path difference for the waves scattered from 

successive planes is 2dsin (θ+δθ).  The condition for 

total reinforcement of the wave is, suppose that δθ is 

such that the plane (m+1) scatters 180˚ out of phase 

with the first plane.  Then 

 

2d sin(θ+δθ ) = [ m+  1/2 ] ƛ ; m = 1,2,3....       (4) 

 

Also Bragg‟s law is,  

 

2dsinθ = mƛ                             (5) 

 

If the Equation (5) is true for the first plane and the 

plane (m+1), it will also be true for any two planes 

with the corresponding separation up to the plane m 

and 2m.  Thus the crystal can be divided into two 

parts, the scattering from which will be 180˚ out of 

phase and so cancels out exactly.  The value of δθ is 

given by Equations (4) and (5).  The value of δθ can 

be found by subtracting Equation (5) from Equation 

(4).  Thus gives, 

 

2d cosθ. δθ = ƛ /2             (6)  

   

δθ = ƛ/(2D cosθ)               (7) 

 

Where D= 2d, is the thickness of the crystal.  The 

angular separation β=2θ+δθ of the directions in which 

the scattering is zero is ƛ/ (D cosθ), β is referred as the 

breadth of the X-ray diffraction peak.  Then from 

above equation, 

 

D = ƛ/βcosθ         (8) 

  

2.3 Scherrer Equation 
Equation (8) does not take into account the actual 

geometric shape of the crystallite and also, not de-

fined the breadth β.  In 1918 Scherrer found that the 

broadening of X-ray diffraction line is related to the 

finite size of the material.  Scherrer introduced a 

shape factor K which lies between 0.9 and 1.15 de-

pending on the shape of grains. (K= 1 for spherical 

crystallites) and, the   Scherrer equation is, 

 

Dhkl = Kƛ/ (β Cosθ)           (9) 

 

This is one of the modified forms of Bragg‟s equa-

tion and it is an extension of Equation (8).  Where „D‟ 

is the thickness of crystallite or the average crystallite 

size, K is a constant dependent on crystallite size, β is 

the full width at half maximum (FWHM), ƛ is the x-

ray wavelength and θ is the Bragg angle.  From this 

equation it is clear that peak width is inversely pro-

portional to crystallite size.  Many factors may contri-

bute to the observed peak profile, some of them are,  

 

 Instrumental Peak Profile 

 Crystallite Size 

 Microstrain, because of 

• Non-uniform Lattice Distortions 

• Faulting 

• Dislocations 

 Temperature Factors 

 

Simply the peak profile is a convolution of the pro-

files from all of these contributions [5]. 

 

2.4 Crystallite Size Broadening 
Peak width due to crystallite size varies inversely 

with crystallite size. i.e., crystallite size gets smaller; 

the peak gets broader and also the peak width varies 

2θ as cos θ.  The crystallite size broadening is most 

pronounced at large angles 2θ. However, the instru-

mental profile width and Microstrain broadening are 

also largest at large angles 2θ. If using a single peak, 

often get better results from using diffraction peaks 

between 30˚ and 50˚ 2θ.  

To estimate the crystallite size from X-ray diffrac-

tion line broadening should be described quantita-

tively.  There are different quantitative measure for 

the breadth of X-ray diffraction peak viz., full width 

at half maximum (FWHM) and integral breadth.  The 

most commonly used quantitative measure of line 

broadening is the FWHM or half peak breadth [6].  

This is illustrated in Figure 3. 

 

 
Figure 3 Full width at half maximum 

 [Courtesy: https://speclab.cr.usgs.gov] 

 

Although FWHM is used as a quantitative measure 

of line broadening for most calculation, it suffers from 

disadvantage that it doesn‟t take into account the 

lower part of the line profile. The best fit taken into 

account the minimum errors as well as the realistic 

values of the individual variables [7]. 
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2.5 Correction to Strain Broadening 
The crystallite size of the particle is not generally 

the same as the particle size, due to the presence of 

poly crystalline aggregate.  Lattice strain is a measure 

of the distribution of lattice constants arising from 

crystal imperfection, such as lattice dislocation.  X-

ray line broadening is used for the investigation of 

dislocation distribution.  Change in d value is referred 

as the lattice strain.  Due to this, only the shifting 

in„d‟ values or 2θ values occur but not contribute for 

broadening.  Strain, which extends over few lattice 

space is called microstrain.  Microstrain only contri-

bute to broadening.  Microstrain are very common in 

nanocrystalline materials.  Anisotropy of the crystal-

lite should be taken in to account while separating the 

strain and particle size contributions to line broaden-

ing.  Williamson –Hall analysis is a simplified 

integral breadth method where both size induced and 

strain induced broadenings are deconvoluted by con-

sidering peak width as a function of 2θ. 

Modified Hall-Williamson models are Uniform De-

formation Stress Model (UDSM) and Uniform De-

formation Energy Density Model (UDEDM).  These 

two models give an idea of the stress-strain relation 

and the strain as a function of energy density, „U‟. 

Uniform deformation model does not take into ac-

count the anisotropic nature of the crystal. UDS and 

UDED models take into account the anisotropic na-

ture, hence they are more realistic methods.  However 

UDSM and UDEDM are essentially different [8].  

Sometimes these models are not able to produce better 

result.  A better evaluation of the size-strain parame-

ters can be obtained by considering an average „size-

strain plot‟ (SSP).  

 

2.5.1 Uniform Deformation Model (UDM) 

Uniform deformation model does not take into ac-

count the anisotropic nature of the crystal.  Here the 

microstrain is assumed to be uniform in all crystallo-

graphic axes.  Strain induced broadening is given by 

Wilson formula as, 

 

βhkl = 4 <Ԑ> tanθ          (10) 

 

Where Ԑ is the root mean square (RMS) value of 

the microstrain. Hence the strain induced in powders 

due to crystal imperfections and distortion can indi-

cated as  

 

<Ԑ> =β/ (4 tanθ)       (11) 

 

Assuming the particle size and strain contributions 

to line broadening are independent to each other and 

both have a Cauchy like profile (Lorentzian), then the 

observed line breadth is simply the sum of size in-

duced broadening and strain induced broadening. 

 

i.e., βhkl = βD + βԐ         (12) 

βhkl = Kƛ/ (D Cosθ) + 4 <Ԑ> tanθ    (13) 

 

By multiplying both sides by cos θ, the Equation (13) 

became, 

 

βhkl cos θ = Kƛ/ (D)  + 4<Ԑ> sin θ            (14) 

 

This equation is Williamson –Hall equation. [12], 

[13]. βhkl values used here is the instrumental cor-

rected values. From Equation (9) and (12), confirm 

that the peak width and crystallite size varies as (1 / 

cosθ), strain varies as (1 / tanθ). By plotting the value 

of βhkl cos θ as a function of 4Sinθ, the microstrain (Ԑ) 

may be estimated from the slope of the line and the 

crystallite size from the intersection with the vertical 

axis (Y – intercept). 

 

2.5.2 Uniform Deformation Stress Model (UDSM) 

Uniform deformation stress model take in to ac-

count the anisotropic nature of young‟s modulus.  So, 

UDSM is more realistic than UDM.  Here the cause of 

anisotropic microstrain is assumed to be a uniform 

deformation stress. Young‟s modulus,  

 

Ehkl = stress / strain     (15) 

 

Hence in this model the isotropic microstrain is re-

placed by, 

 

Ԑhkl = σ / Ehkl          (16) 

 

So in this approach Williamson – Hall equation has 

the form, 

 

βhkl cos θ = Kƛ/(D )  + (4σ Sinθ)/Ehkl         (17) 

 

Where, 𝜎 is the uniform deformation stress. Stress 

and strain are related to each other by Hooke's Law 

where the strain is assumed to be sufficient small that 

stress and strain depend linearly on each other. Such 

a medium is called linear elastic. In its general form 

Hooke's law reads: 

 

𝜎ij =Cijkl Ԑkl     ; with  i, j, k, l =1,2, 3          (18) 

 

The fourth-rank tensor Cijkl is called the stiffness 

tensor and consists of 81 entries. These components of 

stiffness matrix are called elastic constants. This ten-

sor actually links the deformation of to an applied 

stress. The stress tensor is symmetrical, 

i.e., 𝜎 ij = 𝜎 ji . 
 

Alternatively, one may express the strain in terms 

of stress as, 
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Ԑij = Sijkl 𝜎 kl                         (19) 

 

In this case, Sijkl is called the elastic compliance 

tensor and its elements are called elastic compliances.  

For an anisotropic cubic crystal system the 81 compo-

nents of elastic compliance have been reduced to three 

independent ones.  They are S11, S12 and S44.  In a cu-

bic material, the elastic moduli can be determined 

along any orientation from the elastic compliances, by 

the application of the following equation, 

 

Ehkl
-1 

= S11 – [(2 S11- S12- S44) (h
2
k

 2
+k

 2
l
 2
+h

2
l
2)

] /                   

[(h
2
+k

2
+l

2
)

 2
]                             (20) 

 

For a cubic crystal also the elastic constants are re-

duced to three, they are C11, C12 and C44. Hence aniso-

tropy ratio (also called the Zener anisotropy ratio, in 

honor of the scientist who introduced it) is defined as, 

 

 A = 2C44 / (C11 – C12)         (21) 

 

By plotting the value of 𝛽hkl cos 𝜃 as a function of 

(
4𝜎 𝑆𝑖𝑛𝜃

𝐸
), the uniform deformation stress (𝜎) may be 

estimated from the slope of the line and the crystallite 

size from the intersection with the vertical axis (Y – 

intercept). Then also the anisotropic microstrain can 

be calculate by using the Equation (11) [8]. 

2.5.3 Uniform Deformation Energy Density Model  

         (UDEDM) 

   Uniform deformation energy density model take in 

to account the anisotropic nature of young‟s modulus.  

So UDSM is more realistic than UDM.  Here the 

cause of lattice strain is assumed to be density of de-

formation of energy (U).  Thus deformation energy 

density to be uniform in all crystallographic directions. 

According to Hooke‟s law, 

 

               U= (Ehkl. Ԑhkl 
2
) / 2                         (22) 

   
Hence in this model the isotropic microstrain is re-

placed by, 

 

Ԑhkl =  ( 2𝑢 / 𝐸 )                         (23) 

 

So in this approach Williamson – Hall equation 

has the form, 

 

𝛽hkl cos 𝜃 = 
Kƛ

D 
 + 4 𝑆𝑖𝑛𝜃  ( 2𝑢 / 𝐸 )          (24) 

 

𝛽hkl cos 𝜃 = 

Kƛ

D 
 + 4 𝑆𝑖𝑛𝜃  (2 U / E) 

1/ 2
           (25) 

 

    By plotting the value of βhkl cos θ as a function of 

(2
5/2 

Sinθ E hkl
-1/2

) the uniform deformation energy 

density (U) may be estimated from the slope of the 

line and the crystallite size from the intersection with 

the vertical axis (Y– intercept).  Then also the aniso-

tropic microstrain can be calculate by using the Equa-

tion (12) [8]. 

Though the models UDSM and UDEDM take into 

account the anisotropic nature elastic constants, they 

are essentially different.  This is because in the UDS 

model it is assumed that the deformation stress has the 

same value in all crystallographic direction, allowing 

energy density to be anisotropic.  But in UDED model 

energy density is assumed to be uniform [9]. 

 

2.6 Size – Strain Plot (SSP) 
   It is reported that in some cases a better evaluation 

of the size-strain parameters can be obtained by con-

sidering an average „size-strain plot‟ (SSP).  This has 

a benefit that less importance is given to data from 

reflections at high angles, where the precision is 

usually lower.  In this approximation it is assumed 

that the crystallite size broadening is described by a 

Lorentzian function and strain broadening by a Gaus-

sian function [10] hence we have, 

 

(dhkl 𝛽 hkl cos 𝜃)
2
 = 

𝐾

𝐷
 (dhkl

2 𝛽 hkl cos 𝜃) + (Ԑ/2)2
   (26) 

 
 

   Where K is a constant, shape of the particles for 

spherical particles it is given as 3/4.Similar to the W-

H methods, the term (dhkl β hkl cosθ)2 is plotted with 

respect to (dhkl2 β hkl cos θ) for the all orientation of 

peaks. In this approximation the particle size is de-

termined from the slope of the linearly fitted data and 

the root of the y –intercept gives the strain [11]. 

 

3. CONCLUSION   
  In the case of nanocrystalline material, the average 

crystallite size (D) of the material is the most predo-

minant factor which influences the physical and 

chemical properties. The broadening of X-ray diffrac-

tion line is related to the finite size of the material. 

Lattice strain is a measure of the distribution of lattice 

constants arising from crystal imperfection, such as 

lattice dislocation. Change in d value is referred as the 

lattice strain.  Due to this only the shifting in d values 

or 2θ values occur but not contribute for broadening.  

Strain, which extends over few lattice space is called 

microstrain.  Microstrain only contribute to broaden-

ing.  Microstrain are very common in nanocrystalline 

materials. Williamson –Hall analysis is a simplified 

integral breadth method where both size induced and 

strain induced broadenings are deconvoluted by con-

sidering peak width as a function of 2θ. A better eval-

uation of the size-strain parameters can be obtained by 

considering an average „size-strain plot‟ (SSP).  
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