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Abstract: The nonalignment of a rocket with the velocity vector can lead to an increase in the time of flight or 

unsuccessful flight. This theoretical study employs Lagrange method, which is a dual method of constrained 

optimization to derive an expression for the optimal time of flight of rocket-missile system (RMS).  
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1.INTRODUCTION 
Advancements in the design and fabrication of me-

chanical systems, understanding of fuel chemistry, 

and computer technology have led to several sophisti-

cated developments currently associated with RMS. 

Each development is associated with a different de-

gree of complexity and associated computational and 

temporal cost. 

Interestingly, dynamic targets have become an im-

portant aspect of modern warfare. Such targets are 

characterized with high mobility and extensive depth 

among other things. For this reason, there is a need for 

an extensive improvement in missile technology. In 

the view of [1], such an improvement is expected to 

feature, considerable increase in missile range, accu-

racy, and highly destructive capability.  

Second World War and in some cases even to the 

First World War was the starting era of the concept of 

precision guided missiles. This idea which is now 

being explored further is another factor that has both 

gained media attention, in view of its surgical preci-

sion and played significant role in recent conflicts [2].  

From technical point of view, changes in missile 

velocity, direction, and centre of mass coordinates are 

often consequences of deliberately created aerody-

namic forces and moments as a result of local struc-

tural deformation of the missile [1]. This concept is 

shown in Figure 1. The control of trajectory is 

achieved by changing the missile’s aerodynamic char-

acteristics and ballistic trajectory. Trajectory control 

can improve the missile’s target accuracy and range 

capability. 

In this paper, missile time of flight optimization is 

demonstrated with particular emphasis on rocket 

thrust. It provides another dimension through which 

the efficient improvement of missile performance in 

the presence of thrust uncertainty can be studied. 

RMS is a critical control system [3], [4], [5], [6]. 

During flight, a RMS is subjected to random inputs 

which do not allow the output to be strictly within 

prescribed bounds. In flight control systems, perfor-

mance objectives are described by a set of objective 

functions.  

 

 
Figure 1 Diagram for simplifying aerodynamic forces. [2] 

 

The design problem formulated as a set of inequal-

ities includes the output performance criteria in the 

time domain and the robust performance criterion in 

the frequency domain. 

The key problem associated with aerodynamic load 

is that the rocket is required to be continuously 

aligned with the velocity vector [7]. For a rocket filled 

with liquid propellants, any significant transverse ac-

celeration due to lift (or sideforce) can prove to be 

destructive. However, ideas that have been investi-

gated indicate that rocket axisymmetry in shape and 

mass distribution; make possible an equilibrium flight 

condition without a net lift and sideforce.  

In order to correct attitude deviations from equilib-
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rium, most rockets are also equipped with an attitude 

control system for making the vehicle follow the de-

sired flight path, such that angle-of-attack and sideslip 

angle are always zero. Such a control system applies 

its control forces and moments through aerodynamic 

control surfaces and thrust deflection [7]. 

Rocket maneuvers are performed by generating a 

pure torque (without a net lateral force), which causes 

the large rocket thrust to act in a new direction. 

Smaller rockets – such as air-to-air missiles – have 

movable fins mounted fore and aft of the center of 

mass in a way similar to aircraft lifting surfaces. 

However, the fins are much smaller than the wings 

and tails of an aircraft, because they are intended.  

This paper is organized as follows. Section 2 

briefly presents the concept of thrust in rockets. In 

Section 3, thrust vectoring is explained. Section 4 

presents rocket damped-motion. Brief discussion is 

made is in Section 5. Section 6 presents final remarks. 

 

2. THRUST AND ITS EFFECTIVENESS 
High thrust is a critical requirement in the design of 

rocket system. It affects both the propulsion system 

design and the trajectory performance. It is observed 

that a compromise must be sought, as greater thrust 

levels reduce the gravitational losses but increase 

structural mass [8]. Despite the low regression rate of 

the fuel, motor designs of larger diameters that could 

produce high thrust suitable for space launch vehicles. 

[9].  

With a highly accurate dimensionality of the nozzle, 

a rocket missile system will move at a high speed as a 

result of high thrust developed by the exhaust gases 

leaving the nozzle section [10]. It is stated in [11] that 

in pulse detonation engine (PDE), thrust is achieved 

through intermittent detonation. 

 

3. OPTIMALITY OF MISSILE PATH 
Path optimization can be adopted to account for the 

unpredictable challenges during missile motion. In 

one of the commonly encountered situations, an ex-

ternal sensor to the missile is used to acquire critical 

information about a target [1], [2]. This information is 

then used to guide the missile during its course to-

wards the target. This approach finds significant ap-

plication long range missiles. 

Another strong aspect of optimization during mid-

course is identified, effectively taken advantage of, 

and broadly employed in air-to-air missiles [2]. In this 

area of application, the lower drag at higher altitude 

and its ability to greatly improve path travel is broadly 

assessed.  With mid-course optimization, minimal 

time of flight, maximal range, maximal terminal ve-

locity etc can be significantly improved upon. 

Special emphasis is paid to the description and ap-

plication of angle of impact, no angle of attack at im-

pact adjustments in air-to-surface missiles. This en-

sures that the response and performance of a pene-

trating warhead, particularly in the last lap of missile 

travel, is representative of the characteristics of a 

given target profile through terminal trajectory opti-

mization [2]. 

Randomized route assessment and planning can be 

a major focus in which the range of applicability of 

trajectory optimization can be improved. The uncer-

tainty in the different missile path and their effect on 

the missile is also quantified to avoid obstacles, 

maximize survivability, maximize the probability of 

target acquisition etc [2]. As a result, a path dependent 

adjustment factors are developed which can be used to 

achieve an alternative appropriate path to approach 

the target [2]. This planning is normally done prior to 

launch, consequently, through progressively more 

complicated parametric analyses re-planning can be 

done in flight by the missile. The potential bias intro-

duced through computational power and optimization 

algorithms have now made it possible to use real time 

optimization in flight. 

 

4. THRUST VECTORING 
The flight of aircrafts through the atmosphere is 

often characterized by aerodynamic forces and mo-

ments [12].  

 

 
 

Figure 2 Thrust-vectoring geometry for a rocket [7] 

 

Control torque for attitude can be generated by 

thrust vectoring [7]. It involves equilibrium realiza-

tion through the use of transverse forces. Conceptu-

ally, at least two equal and opposite control forces is 

necessary to form a pure couple. Vectored thrust 

could be opposed by control force generated by aero-

dynamic fin. Such an arrangement is commonly found 

in short-range missiles. For launch vehicle, thrust-

vectoring can be realized in several ways such as 

gimbaling of a single main engine balanced by reac-

tion jets or vernier rockets. This is depicted in Figure 

2. 
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5. DAMPED ROCKET MOTION 
In this analysis, a rocket of mass   is considered to 

be accelerated from rest at the earth's surface at an 

angle   to the horizontal, to a height   in time   , by 

the thrust    of its engine. Where,  , is the rocket 

acceleration. Assuming the fuel consumption,  , of 

the rocket is modeled as in (1), which is the objective 

function. 

                   ( )  ∫   ( )  
  
 

                           (1) 

 

Also, supposing h is so small that both m and g, the 

acceleration due to gravity, remain constant during 

flight, then we wish to control the thrust to minimize 

the fuel consumption stated in (1). 

When the time of flight is constant, then the effec-

tive acceleration of the rocket in the vertical direction 

can be written by using Newton’s second law of rec-

tilinear motion as 
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When the effect of atmospheric drag  , is taken into 

consideration, (2) becomes 
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Equation (3) can be manipulated as follows 
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Simplifying (3) further using (8), we have 
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Considering the time of flight     , (9) is written 

as 
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The constrained function   is defined as 
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Now, the minimization of (1) will be embarked 

upon subject to (11). This will be done by seeking a 

closed form solution of the Lagrange duality which 

essentially turns a constrained problem into an almost 

unconstrained one. On the basis of duality theory, the 

definition of Lagrange function is 
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Equation (12) is true if there exits   

[          ].  ( ) is the objective function and    

are the constrained functions. In this problem, there is 
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Therefore, the Lagrange function  (   ) of this 

problem is 
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From (1), 
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Differentiating (21) with respect to   , we have 
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The minimization of (22) will yield the optimal 

time of flight expression,   . 

6. DISCUSSION 
Lagrange method [13], which is a dual method of 

constrained optimization widely discussed in varia-

tional calculus [14], is used to derive an expression 

for the optimal time of flight of RMS. The effect of 

rocket thrust and any further implications of using 

constrained variables are demonstrated through the 

formulation of constrained function assessment. 

In this optimization analysis, a robust control which 

will allow for the maintenance of design specification, 

such as missile time of flight in the presence of rocket 

thrust uncertainty is closely quantified. The con-

strained function in this analysis is defined in (12). 

Through progressively more complicated paramet-

ric analyses, it is observed that a Lagragian function is 

a concave function in Lamda which does not require 

any assumption about the convexity of the objective 

function or the constraint function. The optimal time 

of flight is dependent on  ,  ,   and  .  

   

7. CONCLUSION 
The main conclusion of this work is that through 

variational calculus, it is easier to define the con-

strained function required in the derivation of optimal 

time of flight of RMS. The Lagragian method proves 

to be easier and translate the problem to an uncon-

strained optimization type. The significant of rocket 

thrust as a major uncertainty is considered. The analy-

sis of the obtained optimal time of flight would be 

carried out in future work. 
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